
Implementation of an Information Retrieval System
Luka Č., Edoardo G., Alberto M.

Radboud University Nijmegen

ABSTRACT
Relevance represents the most important concept in Information
Retrieval. However, while for the human beings the process to es-
tablish a document relevance with respect to a query is internalized,
the machines need specific models, representations and measures to
quantify and evaluate relevance. In this paper, we describe the im-
plementation of an Information Retrieval System containing some
"instantiations" of the Vector Space Model, able to assess and rank
the relevance of the documents for a certain query, based on the
concept of similarity. The goal of the project lies in the willingness
of understanding the mechanisms, the relationships and the diffi-
culties related to the implementation of such a system, with a focus
aimed on the features of each instantation.

KEYWORDS
Information Retrieval System, relevance, Vector Space Model, simi-
larity

ACM Reference Format:
Luka Č., Edoardo G., Alberto M.. 2019. Implementation of an Information
Retrieval System. In Radboud ’19: Information Retrieval, June 23–12, 2019,
Nijmegen, NL. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The Vector Space Model belongs to the class of Similarity Based
Models. In this context, as the name implies, the relevance of a
document with respect to a certain query is defined by the concept
of similarity. As a matter of fact, the Ranking Function, which is
designed to evaluate the relevance of each document, is built up as
the similarity measure between documents and query. As can be
seen in Figure 1, in the Vector Space Model, the entire set of terms
defines a high dimensional space (each term defines a dimension)
in which both query and documents are projected as vectors with
a direction and a verse. There are some assumptions and several
implementations we can test.

• First, we need a word-representation method, in order to
set up the way the model administrates terms within the
documents.

• Second, we should think about the value we could assign
to each term present in a document (binary values for only
presence and absence, frequency of the term, et cetera).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Radboud ’19, June 23–12, 2019, Nijmegen, NL
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Example of Vector Space Model, each term defines
a dimension.

• Last, we must provide a similarity function, in order to com-
pute the relevance score of each document with respect to
the query.

During the construction of our system, we have performed sev-
eral trials in order to get and establish themost appropriate methods
for our purpose.

In this way, we have tried to deeply understand the meaning of
"improvement", recalling step by step the results and the discoveries
made over the years by researchers in this field of interest.

Throughout the implementation of the system, we have also
performed some pre-processing methods on the entire collections
of texts. It concerned important steps, useful to reduce the noise
and improve the quality of the data.

At the end, once having built each instance of the model, we
needed a consistent system to evaluate the results. At that point, we
would obtain some ranking of documents based on the input query
so that for each instance, we would get the most relevant documents
according to that particular query. To compare the results achieved
at the end of the process and infer some helpful conclusions; it
is necessary for us, however, to know a priori which are the best
(most pertinent) documents for the query we provided.

2 SYSTEM OVERVIEW
The Information system implementation has been carried out by the
use of the software Python and the collection of books from Project
Gutenberg. In this paper we will treat five different instantiations
of the Vector Space Model [4]. The development of the five steps is
preceded by some pre-processing methods. In particular, once we
fixed the documents and the corpus as a set of vectors, we adopted
some common transformations:

• All the terms have been converted to lower case;

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Radboud ’19, June 23–12, 2019, Nijmegen, NL Luka Č., Edoardo G., Alberto M.

• Removal of all so-called "Stop Words", i.e. most common
terms in the language, such as articles, prepositions, etc;

• All the numbers have been transformed into their word
representations;

• Removal of the words composed by a single letter;
• Implementation of the Stemming method, i.e. reduction of
the (derived) words into their stem;

• Implementation of the Lemmatization method, i.e. con-
version of a word into its base form.

2.1 First Instantiation
The first implementation of the Vector Space Model has been con-
ducted considering the most basic assumptions. The model assumes
as words depiction the bag-of-words representation of text. This
method allows us to get the score of a query q with respect to a
document d relying on the score achieved by each word in the
query. In this way, a text is represented as a multi-set of its words,
keeping the multiplicity but disregarding grammar rules.

The assigned value for each word is defined by the bit-vector
representation, in which every vector has the same length and
each query or document term will get the value 1 if the term is
present or 0 if it isn’t.

Eventually, the Cosine Similarity will be set as the similarity
function, i.e. cosine of the angle between the two vectors (query
and document).

cos(q,d) =
q · d

∥q∥ ∥d ∥
(1)

Thus, in this instantiation we have:
• Bag-of-words representation
• Bit-Vector representation
• Cosine-Similarity

2.2 Second Instantiation
In the first step we have considered only the presence or absence
of a certain term as its weight inside the similarity function. In
this step the improvement is quite easy to implement. In fact, we
would like to consider not only the presence, but also how many
times the term appears in the document (or query). Hence, we can
introduce the Term Frequency to establish a more concrete and
useful criterion to calculate the similarity function:

TF (w,d) = count(w,d) (2)
where w coincides with the word and d with the document. Thus,
we have:

• Bag-of-words representation
• Term-Frequency representation
• Cosine-Similarity

2.3 Third Instantiation
The Term frequency itself can be misleading. It could often hap-
pen that documents contain very common words, which were not
deleted by the stop words method. Matching these words between
query and document is not very significant for our purpose. One
approach to avoid this unpleasant result is to introduce the Inverse
Document Frequency.

IDF (w) =
M + 1
d f (w)

(3)

Where M is the total number of document in the collection, while
denominator shows the total number of documents containing the
word w.

This adjustment leads to assigning an increasing weight (reward)
to less common words, i.e. ones that appear in fewer documents.

2.4 Fourth Instantiation
At this point, the improvement implemented before assigns a rea-
sonable weight to the vector elements (terms), that is the TF-IDF
weight. According to the correction above, though, very rare terms
reach disproportionate influence to the overall score of the docu-
ment so we need to control the term frequency. A very common
way, in these cases, is to apply a transformation to the interest
function (here, the TF). Generally, when we need to restrict the
range of some function, we have two basic options:

• Apply a Logarithm;
• Set an upper bound.

Based on the state-of-art methods, we could have decided to
pick the second one. In fact, by introducing the parameter k and
with some adjustments, is possible to control the upper bound of
the function and build up the so-called TF BM25. However, we
preferred to implement and observe the results of both of these
methods:

• Logarithmic Transformation

y = log(1 + x); (4)

• BM25 TF

y =
(k + 1)x
x + k

. (5)

In our case the term x is the TF. The fraction x
x+k will never

exceed 1, thus k+1 will be the upper bound of the function.
Moreover, one more advantage of this last transformation is that

we can return to the instantiations above defined, just varying the
parameter k value.

k = 0 =⇒ bit-vector representation.
k >> 0 =⇒ TF-IDF representation.

2.5 Fifth Instantiation
The last improvement concerns the idea of document length. It is
easy to imagine that long documents share a higher probability
to match terms in the query and thus to get higher scores. One
immediate technique to control the document dimension is to apply
a normalization. In particular, it sounds clever to penalize long
documents, rewarding short ones in the meanwhile. One of the
most used method is the Pivot Length Normalization. The idea
behind it is to exploit the average documents length as a pivot.

Normalizer = 1 − b + b
|d |

avdl
(6)

Through this step, we are going to penalize longer-than-average
documents and reward shorter ones. This is possible by knowing

Implementation of an Information Retrieval System Radboud ’19, June 23–12, 2019, Nijmegen, NL

in advance the average length of all documents (avdl) as well as
the length of the current document d, i.e. |d|.

The entire method is governed by the parameter b, which, vary-
ing from 0 and 1, controls the degree of normalization.
In fact, an increasing value of b implies a strong normalization. At
the end, with this last improvement, we were able to define the
model known as BM25 Okapi.

3 DATASET AND IMPLEMENTATION
The dataset itself consists of 148 books divided among 6 categories,
namely: Architecture, Astronomy, Biology, Chemistry, Computer Sci-
ence, and Philosophy. All books have been collected manually from
the Project Gutenberg website and separated into thematically sim-
ilar categories [1]. For the categories above mentioned, there are
respectively 17, 25, 24, 19, 43, and 20 books for each.

As mentioned in the first section, we have provided support for
several pre-processing techniques. After some experimentation, we
have decided to use the removal of stop words, removal of letters,
transformation of numbers into their word representations, and
lemmatization for converting the words into their base forms [2].
For this, we used packages nltk and num2words available in Python,
as well as some simple Regex patterns.

The complete implementation and the dataset used will be made
available on our main project website [5].

4 EVALUATION
As said before, we need to assess the performance of our models.
Evaluation is a very important part of implementing an IR system,
since we should be aware about the improvement brought by any
instance. Each instantiation of our system gives us a list of scored
books within the entire collection, sorted by decreasing order of
similarity, according to the input query. The next step consists in
the verification of the consistency of such results.
We decided to carry out this step by relying on our a priori knowl-
edge, applying the so-calledOffline Evaluation technique. A very
simple idea to measure the effectiveness of the models can be to
pick one of the categories and use it as the query. We will have a list
of retrieved documents and a certain number of relevant documents.
For each query, we will fix the number of relevant documents to be
retrieved as equal to the number of documents within the category
specified in the query (e.g. for the query: "Astronomy", the number
of documents to be retrieved will be equal to the number of docu-
ments in the Astronomy category). This method allows us to know
which books have to be considered as relevant (if they belong to
the same category as the query) or not relevant (the ones belonging
to other categories). At this point, once all the models have been
run, we can define as "true" the documents correctly classified by
the system, and as "false" the rest of them. These definitions allow
us to build the Confusion Matrix and to compute some important
measures useful for determining the validity of our model, such as
Accuracy and Precision.

Thus we have:
From which we can define:

Figure 2: Confusion Matrix

• Accuracy:

A =
a + d

a + b + c + d
(7)

• Precision:

P =
a

a + c
(8)

In particular, Accuracy is defined as the total number of correct
classifications (true positives plus true negatives) divided by the to-
tal number of documents, while Precision is the fraction of retrieved
documents which are relevant to the query (true positives divided
by true plus false positives). So, the first one is the percentage of
the correct classifications made by our system, while the latter is
focused on a, i.e. the total number of retrieved relevant documents.

5 RESULTS
In this section we are going to analyze the results returned by
each model described in Section 2. It should be emphasized that
each instance will show 6 different results, one for each category
contained in the collection. Two of the used instances (namely BM25
and BM25 Okapi) have parameters, while others do not. For both
of them, the parameter k has been fixed to 1.4, while additionally
for Okapi, we used 0.75 as the value for b [3].

Originally, each table contained Recall and F1 scores in addition
to Accuracy and Precision but after obtaining the results, we have
decided to remove them from the results. This was done because
in every experiment, the Precision and Recall we have obtained
have had the same value – this is the result of our experimental
setup: while retrieving documents for a certain query, the number
of false positive documents retrieved will match the number of false
negative documents which the model should have retrieved but
didn’t. Recall and F1 therefore have the same value as Precision,
and have thus been removed.

Bit-Vector Identity
Query Accuracy Precision
Architecture 0.7838 0.0588
Astronomy 0.7973 0.4000
Biology 0.8784 0.6250
Chemistry 0.8514 0.4211
Computer 0.8919 0.8140
Philosophy 0.8378 0.4000
Average 0.8401 0.4532

Radboud ’19, June 23–12, 2019, Nijmegen, NL Luka Č., Edoardo G., Alberto M.

TF Identity
Architecture 0.8919 0.5294
Astronomy 0.9324 0.8000
Biology 0.8919 0.6667
Chemistry 0.9324 0.7368
Computer 0.8378 0.7209
Philosophy 0.9054 0.6500
Average 0.8986 0.6840

TF-IDF Identity
Architecture 0.9054 0.5882
Astronomy 0.9324 0.8000
Biology 0.8919 0.6667
Chemistry 0.9054 0.6316
Computer 0.7568 0.5814
Philosophy 0.9189 0.7000
Average 0.8851 0.6613

TF-IDF BM25
Architecture 0.8378 0.2941
Astronomy 0.9054 0.7200
Biology 0.8784 0.6250
Chemistry 0.8784 0.5263
Computer 0.7838 0.6279
Philosophy 0.8784 0.5500
Average 0.8604 0.5565

TF-IDF BM25 Okapi
Query Accuracy Precision
Architecture 0.8649 0.4118
Astronomy 0.9324 0.8000
Biology 0.8919 0.6667
Chemistry 0.9054 0.6316
Computer 0.7838 0.6279
Philosophy 0.8919 0.6000
Average 0.8784 0.6230

TF-IDF Log
Architecture 0.8649 0.4118
Astronomy 0.9459 0.8400
Biology 0.8919 0.6667
Chemistry 0.9324 0.7368
Computer 0.7838 0.6279
Philosophy 0.9189 0.7000
Average 0.8896 0.6639

From the results above, we can see a big improvement in TF
model with respect to the Bit-Vector model. Simply by counting the
words instead of keeping a "boolean flag" about their presence, pre-
cision is increased by more than 20%. Considering TF-IDF models,
some unexpected results can be seen. Contrary to our intuition and
expectations, the results are overall not better than the simpler TF
model. TF-IDF builds upon TF by introducing Inverse Document
Frequency whose purpose it is to reward words appearing in fewer
documents and vice versa. The unexpected results indicate that the
IDF component has not been particularly effective in doing so, at
least for this particular collection of documents. However, among
the last three TF-IDF methods (i.e. transformations), a general trend
can be noted: Log transformation produces better results than the
BM25 Okapi transformation which, in turn, produces better results
than the BM25 transformation, showing a steady progress.

6 CONCLUSION
In the development of this project we wanted to retrace the path
of improvement carried out by many researchers in order to build
a retrieval system based on similarity. We have implemented sev-
eral models to represent documents, starting from Bit-Vector (the
simplest one), proceeding with TF (Term Frequency), then TF-IDF
(including BM25 and logarithmic transformations), and ending with
the BM25 Okapi, which is considered to be the most advanced
among these instantiations.
The system gives as output a list of the documents ranked in de-
scending order by their similarity with the query, computed through
the cosine similarity. In order to have an evaluation about the perfor-
mances of the system, we chose to select as queries the categories
in which our collection of documents is divided, and then see if the
model is able to retrieve the correct books, i.e. those which belong
to that category. Finally we were able to construct the confusion
matrix and to compute Accuracy and Precision.
These measures, defined in Section 4, helped us to estimate the
weight of such enhancements. We have specified, in this regard,
that Precision, Recall and Accuracy are some of the most common
and useful indices, but we cannot use all of of them, given their
nature and the way we set the number of documents to be retrieved.
As we expected, the simplest representation – Bit-Vector – gives
the lowest performances; then, the more complex the model is,
the better the results are, except for the fact that the logarithmic
transformation of TF-IDF performs better than the BM25 Okapi.
Focusing our attention to the improvements, it is possible to in-
spect interesting effects. The highest gap in terms of Accuracy and
especially Precision is obtained by the handing from the first to
the second instance. In particular, the Term Frequency seems to
remark its strong utility, boosting both the indices in almost all
the categories available. The IDF weight, such as all the further
improvements, on the contrary, seems to only fix the breakthrough
carried out by the first adjustment.
In conclusion, we were able to construct our own retrieval system
and to carry out experiments to evaluate it; we obtained positive
and promising results that confirmed the effectiveness of our model.

7 FUTUREWORK
In terms of future improvements, we would like to dive deeper
into the problem of TF-IDF. We think it is an interesting and unex-
pected twist that the more complex model with the IDF component
produces poorer results than the simpler one, relying solely on
the frequency component. We would like to test our models on
different datasets to see if we can reproduce the results, or if the
difference in quality, size, and content of the dataset would change
the current trend of results.

REFERENCES
[1] [n.d.]. Project Gutenberg. Retrieved Dec 23, 2019 from http://www.gutenberg.org/
[2] 2019. TF-IDF from scratch in python on real world dataset. Retrieved Dec 23, 2019

from https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-
in-python-on-real-world-dataset-796d339a4089

[3] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2018. Intro-
duction to information retrieval. Cambridge University Press.

[4] ChengXiang Zhai and Sean Massung. 2016. Text data management and analysis: a
practical introduction to information retrieval and text mining. ACM Books.

[5] Luka Čupić, Edoardo Gervasoni, and Alberto Monaco. [n.d.]. Implementation of
an Information Retrieval System. https://github.com/lukacupic/IR-Project/

http://www.gutenberg.org/
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://github.com/lukacupic/IR-Project/

	Abstract
	1 Introduction
	2 System Overview
	2.1 First Instantiation
	2.2 Second Instantiation
	2.3 Third Instantiation
	2.4 Fourth Instantiation
	2.5 Fifth Instantiation

	3 Dataset and Implementation
	4 Evaluation
	5 Results
	6 Conclusion
	7 Future Work
	References

